
First Coagulation Controller installation for Pi in South America
Following on from the success of numerous water treatment plants in the UK and Ireland, Pi is now beginning to offer the CoagSense coagulation controller to other countries in the
Chlorine analysers from Pi are used in many applications requiring the measurement and control of online residual chlorine levels in water. The HaloSense range is suitable for total or free residual chlorine monitoring or control applications in potable water, seawater, process water, swimming pool water, waste water, food washing, paper and pulp, etc.
Chlorine Analyser
The following are available in the HaloSense range;
The HaloSense range of controllers/transmitters means that you get exactly what you need and nothing that you don’t. From a low cost no-frills chlorine dosing controller (CRONOS®) to a highly sophisticated colour display, remote access controller (CRIUS®) – and all with the same great sensors! Chlorine dosing control is now simpler and cheaper than ever! Both instruments can have multiple sensors and multiple sensor types, saving money on the requirement for one sensor and one transmitter per measurement.
Many water companies want to measure free chlorine residuals without the need for chemical buffers traditionally associated with such measurements. Acetate and phosphate buffers are expensive and environmentally unfriendly. Buffer delivery systems are maintenance intensive and have fairly costly consumables and there are health and safety considerations in the handling of the acids and high disposal costs if the acid treated water is unable to be fed back into the water supply.
Amperometric cells and most polarographic probes only respond to hypochlorous acid, (HOCl). HOCl dissociates into hypochlorite (OCl–) in a pH dependent manner. This is why most chlorine monitors need acid buffers in most applications. The typical pH of water measured on a water treatment works may range from 7 to 9.2. Chemical buffering reduces the pH to between 5 and 6 and ensures that the majority of the residual chlorine is present as HOCl (see graph below).
The HaloSense Free Chlorine Sensor measures all the HOCl and the majority of the OCl– present (blue line on graph). This results in a vastly reduced pH effect and means that most chlorine monitoring applications require no buffer and no pH compensation.
Need help with an application? Click here!
The HaloSense chlorine monitor range is particularly suited to working in sites where reliability and ease of use are most important.
Did you know that when you dose chlorine into seawater it is bromine that does the disinfection?
Did you know that DPD 1 measures free chlorine or total bromine and not free bromine?
The chemistry of the chlorination of seawater is more complex than many people realise and although the measurement of chlorine residuals is possible in seawater (and therefore automatic control of chlorine dosing), better results will be obtained if this is fully understood.
Seawater contains about 70 ppm dissolved bromides most of which are sodium bromide. When you put chlorine in water it displaces (because it’s more reactive) the bromine from the bromide and becomes a chloride. So for up to about 70 ppm of total chlorine dosed what you actually have in the water is free bromine and combined bromine (NOT free and combined chlorine) so it is the total bromine that actually does the disinfection [1]. So why does everyone call it chlorination when technically it is bromination? Mainly because most people don’t know this interesting bit of chemistry. So what? Normally it makes no difference at all as bromine is an effective disinfectant, however there can be a lot of confusion when it comes to monitoring residuals and controlling dosing. Choosing the correct sensor to control the dosing is crucial as is choosing the correct DPD test.
Pi offer a specialist range of seawater chlorination controllers, but to choose the right controller we need to understand the chemistry going on. A technical note on the same subject is available here.
Due to the confusion on what is being measured it is easy for an engineer to specify the wrong equipment and calibrate it incorrectly. For example, it is common for a free chlorine sensor to be specified for seawater chlorination control. Most electrochemical free chlorine sensors will react to free bromine (not all so be careful!) but this isn’t necessarily what you need for bromination control. Most authors agree that whilst the disinfection capability between free chlorine and combined chlorine differs, when it comes to free bromine and combined bromine, both forms of the chemical are equally good at disinfection so a better measurement would be total bromine, which requires a total bromine sensor.
To add to this already confusing environment we need to look at calibrating online sensors or using handheld photometers to track the residual. DPD is used extensively to measure chlorine residuals and it also reacts to bromine so can be used for both, however, DPD 1 measures FREE chlorine or TOTAL bromine. The situation can therefore arise where you have an online instrument such as a CRONOS® or CRIUS® specified as a free chlorine, actually measuring free bromine but calibrated as a total bromine (against DPD 1)! Typically, the best results are obtained by specifying a total bromine (total chlorine) sensor and calibrating it using DPD 1. That, however, isn’t the end of the story! When specifying an analyser it is crucial that we suppliers know that it is for use with seawater because the physical and chemical make-up of seawater is very different to potable or process water and this can affect what we would supply to customers.
It is crucial for us to know if you are going to use a Pi sensor in seawater, so we can provide you with a saltier electrolyte. Osmosis means that water moves from a low solute concentration to a higher solute concentration across a semi-permeable membrane. The electrolyte in our sensors is saltier than potable or process water so osmosis forces water into the end of the sensor, which the sensor is designed to cope with, however, with seawater the process is reversed and the water in the electrolyte can be forced out of the sensor into the sample. To solve the problem we supply electrolyte especially designed for seawater, with a higher salinity.
Many seawater chlorination applications are estuarine in nature (partly seawater and partly fresh water) and it is the degree of dilution which determines which sensor and which electrolyte you should use. Seawater has approximately 70 ppm bromides and so up to 70 ppm chlorine the replacement will be 100%. If the seawater is 50% fresh water then up to 35 ppm chlorine will give 100% displacement. For example, if we looked at a 2 ppm residual then the water could be only 3% seawater and 97% fresh water and you would still be measuring bromine, so a total bromine sensor calibrated with DPD 1 would be appropriate. For any water that is contaminated with seawater the seawater electrolyte is likely to be the most appropriate.
If all of this is too much to take in and remember, then don’t worry! Just remember to talk to Pi for any online chlorination application, and we will do the rest… guaranteed!
[1]. White’s Handbook of Chlorination and Alternative Disinfectants, 5th Edition, Wiley – page 874, pages 122-129.
You probably know that some instruments use ORP to control chlorine dosing and others use ppm chlorine sensors but … did you know that ORP over about 3 ppm won’t work?
… did you know that swimming pools in the USA use ORP and in Europe use ppm chlorine sensors?
… did you know that the ORP of towns water can vary a great deal?
In the USA nearly all pools and spas use ORP sensors to control their chlorine dose, yet conversely in the UK and Western Europe most ORP systems have been replaced with systems that measure the concentration of free chlorine in water. Pi provides systems that utilise either or both technologies.
Oxidation reduction potential (ORP or REDOX) sensors, measure the tendency of water to gain or lose electrons from anything in the water. The more positive a reading from an ORP the greater the tendency the water has to oxidise (gain electrons from) organisms or other material in the water, thereby killing or destroying them.
When chlorine is dosed into a pool it form OCl– and HOCl. Disinfection is largely done by the HOCl and ORP responds to the concentration of HOCl in the water, which makes it a good measure of the tendency of the chlorine in the water to kill bugs. Despite this, ORP is a secondary measure of HOCl and is affected by a multitude of other factors, some of which will be touched on below. The main attractions of ORP are; low purchase cost, no calibration and little or no maintenance.
Unfortunately, what ORP sensors measure is tendency and not capacity, i.e. ORP measures the likelihood or the ability of the water to kill bugs, but not how many bugs that water can kill, a subtle but very important difference. A sample with high ORP may be able to kill a small number of bugs very quickly but then not be able to kill future pollution. What’s more, although chlorine affects ORP very strongly it is not the only variable involved. The pH of water affects ORP directly and also affects the concentration ratio of OCl–/HOCl, the two main disinfectant components. A lower pH (higher acidity) will cause an increase in the relative concentrations of HOCl causing an increase in ORP.
Perhaps the biggest issue with ORP is that the ORP readings on water with no chlorine in it will be different depending on the source of that water. This means that an ORP of 750mV in one part of the country is not the same chlorine concentration as 750mV in another part of the country. Also the ORP response to HOCl is not linear and increasing residual chlorine above 3 ppm has little effect on ORP readings making control above 3 ppm extremely difficult. These issues typically lead to overdosing the water with chlorine, in order to compensate for these effects. This can be seen very clearly in US pools which often have more than 2 ppm of chlorine compared to European pools which typically operate around 0.8-1.5 ppm (The World Health Organisation recommends 1 ppm residual).
These sensors use electrochemistry to measure the free chlorine concentration directly. They tend to be slightly more expensive than an ORP sensor, but are more reproducible and precise, and therefore tend to give better control (and therefore reduced chemical cost). They are specific to free chlorine (the disinfectant) and can be easily calibrated using a DPD test for free chlorine. Whilst the capital cost for a ppm chlorine sensor is higher, total cost of ownership tends to be lower as ORP sensors are typically replaced every year and ppm sensors last for ten years or more.
A ppm sensor measures the capacity of water to kill organisms, the only problem is that it doesn’t measure how fast the bugs are killed, a variable largely down to pH. There are two different types of ppm sensors. The first measure only HOCl, and have very similar problems to ORP sensors. The other type of sensor, in pHs below 8.0, measure both HOCl and OCl–. Pi only recommends the use of sensors that (for use in pools) are independent of pH, and the use of pH control that is independent of chlorine dosage. This leads to tighter control of both pH and free chlorine meaning chlorine residuals can be more tightly controlled and reduced, which in turn leads to lower costs and a more pleasant bathing experience.
Advantages | Disadvantages |
---|---|
ORP Sensors Simple (no calibration) Inexpensive | ORP Sensors Doesn’t measure disinfection capacity Affected more by pH than by free chlorine Non-Linear Not reproducible (not the same from site to site) Affected by changing water chemistry Affected by all oxidants Using ORP control normally leads to higher residuals and less stable control |
ppm Sensors Measure free chlorine directly Results comparable across different sites Linear response Only affected by free chlorine Using a ppm sensors leads to lower residuals, more stable control and better swimmer experiences | ppm Sensors Requires calibration More expensive – but not much More maintenance – but not much |
If you’ve ever had an application that uses Reverse Osmosis (RO), such as in a renal ward, you probably understand the damaging effect that chlorine can have on RO membranes, but did you know that…Pi has a security system that can alert you to any free chlorine present and can actually prevent the contaminated water from reaching the membranes at all?
The most common source of water for corporate buildings, hospitals and industrial processes, is standard mains water. This water typically contains chlorine, added by municipal water companies, for its disinfection properties. For any system that requires RO membranes, if the water source is mains water, it is common to have carbon filters positioned before the membranes. The carbon filters are designed to remove any chemicals in the water that might be damaging to the RO membranes, including chlorine.
Our HaloSense Zero chlorine controller measures the water coming out of the carbon filters before it reaches the RO membranes. Any free chlorine breakthrough from the carbon filters is detected by the system, which will set off an alarm and can also be configured to automatically shut off valves to prevent the contaminated water from reaching the RO membranes.
The HaloSense Zero effectively acts as a security measure to ensure that if there is a breakthrough of chlorine, the system can be shut down to prevent damage to the RO membranes. This can help to extend the lifetime of the expensive RO membranes and save the customer money.
The removal of chlorine is even more important in hospital systems where the water is supplied to renal wards. In this case the HaloSense Zero chlorine analyser not only protects the RO membranes, but it can also help to save lives. If any chlorine was to break through the carbon filters and make it past the RO membranes as well, it could endanger the lives of renal patients in the hospital. The HaloSense Zero chlorine system is a fantastic safety feature, providing an extra line of defence against the potential hazard.
The HaloSense Zero consists of a sensor designed to measure the absence of chlorine connected to a CRONOS® or CRIUS® controller. The sensor can detect even very low levels of free chlorine, while the CRONOS® or CRIUS® controller acts as the brains of the system, interpreting data from the sensor. In the event that any free chlorine is detected, the analyser will send an alarm signal and can automatically shut off valves to prevent chlorine from reaching the RO membranes.
The only catch is that the HaloSense Zero can’t measure combined chlorines in the water. Typical mains water in most countries contains a mixture of free chlorine and combined chlorine which is what the HaloSense Zero is designed to detect and help protect the RO membranes against.
The ingenious HaloSense Zero chlorine analyser will even periodically check the responsiveness of the sensor automatically, to ensure that the sensor is still reacting correctly when free chlorine is present. It does this by switching between the post-carbon filter water and chlorinated mains water using a 3-way solenoid valve controlled by a programmed timer.
If you are using a carbon filter before your RO membranes to remove the chlorine, probably the only reason you aren’t using this system already is simply that you haven’t heard of it before. The Pi HaloSense Zero chlorine system is just one of Pi’s innovative solutions to water treatment problems.
You probably know that most chlorine, ozone and chlorine dioxide analysers are calibrated using hand held DPD kits but…
… did you know that DPD can’t tell you when you have no residual?
… did you know that errors on DPD performance can be up to ± 100%?
… did you know that a significant number of service calls received by Pi relate to poor calibration?
DPD (N.N-diethyl-p-phenylenediamine) is a chemical that when mixed with water containing an oxidant, changes colour depending on the concentration of the oxidant present. A handheld colourimeter measures light passing through the coloured solution. The absorption of that light by the liquid gives a concentration value. It is usually used to check concentration of, for example, free chlorine, total chlorine, ozone and chlorine dioxide etc. in water.
When the DPD kit gives a value, it is often used to calibrate online instruments… and that is where Pi comes in!
As a manufacturer of online instruments we have to understand DPD in order to help our customers when they have problems calibrating their online monitors.
This Focus On will look at:
If you suspect there is zero oxidant in your sample, hold the vial up to a white surface. If you cannot see any trace of pink colour, it is likely any reading you are getting is from the unreacted DPD tablet.
(and won’t always give a ‘high concentration’ reading error).
Many people are unaware that past a certain level of oxidant, DPD will not form its characteristic pink colour, and instead will ‘bleach’ to form a clear solution. This can lead people to think there is little or no oxidant in their water, when in fact there is so much that it is bleaching their DPD. Be on the lookout for a flash of pink when the tablet or powder is added if you suspect your sample is being bleached. NB. special kits and reagents are available for measuring oxidant above 6 ppm.
chlorine, chlorine dioxide, chlorite, ozone, organochlorides, bromine and more, meaning interferents are a big problem.
DPD is a fantastic chemical, in that it is very versatile as a colouring agent, which is how it gives the oxidant the colour that we measure. This versatility does come at a price, DPD is not very specific as an analysis tool, and so if other chemicals are present in the sample, they can interfere with the reading, giving an inaccurate result. Common interferents include chlorine dioxide (for chlorine measurement, and vice versa), sodium chlorite, ozone, organochloramines, peroxides, and many more.
Here is an easy to read, printable checklist to ensure accurate DPD readings every time.
The pink solution formed after DPD tests can leave a residue behind on the glass, which will affect the DPD reading. This residue can be easily cleaned off using what is in your DPD kit.
Tap water
If you use normal tap water to wash out vials, droplets left behind can affect your reading due to the residual chlorine in drinking water. It is best (but not always practical) to use deionised water to wash out your vials, but if this isn’t available (deionised water can be purchased as car battery top up water from any car parts supplier) then you can use cooled boiled tap water, as boiling gets rid of any chlorine. If not then simply make sure the vials are perfectly dry before use.
DPD has a wide range of interferents. This means recurrent problems can sometimes be caused by the chemical makeup of the sample. For example, chlorite (ClO2–) and chlorine dioxide both affect DPD, but only chlorine dioxide is measured by most chlorine dioxide amperometric sensors.
DPD can be used to track bromine, but DPD No.1 tablets measure FREE chlorine or TOTAL bromine. As combined bromine is just as effective a disinfectant as free bromine, this generally doesn’t pose too much of a problem, however some amperometric sensors measure free bromine, and cannot be calibrated using DPD No.1 tablets. For more information on measuring bromine, or chlorine in seawater, please see Pi’s technical note on Seawater Chlorination.
This option can be added to our pH, ORP, Turbidity, Suspended Solids and Dissolved Oxygen (DO) sensors. Consisting of an end cap to direct the flow of clean water (or air for a DO sensor) across the face of the sensor blasting any dirt away. The cleaning is controlled by a single valve positioned in an easily accessible location.
If using air to clean a DO sensor the system can also automatically verify that the sensor is still responding correctly, removing any need to remove the sensor from the sample for months at a time.
For sensors that require flow cell mounting like Chlorine, Ozone and Chlorine Dioxide, an Autoflush system has inbuilt valves which automatically start/stop the sample flow and control the flow of clean water past the probe. The user can set the flushing interval and duration to keep the flow cell and sensor clear from fouling. For particularly dirty or stubborn contaminants, warm water can be used as the flush water to aid cleaning.
With the above options, whatever the application or parameter being measured, Process Instruments will be able to provide a monitoring system that will not only be accurate, precise and long lasting but that will also remain free from fouling and save the operator both time and money.
Measuring free chlorine and chlorine dioxide independently of each other is quite a challenge, given their chemical similarities. Many sensors struggle to differentiate between the two measurands, but did you know that…
…many chlorine probes suffer from interference in the presence of chlorine dioxide?
…DPD1 will read both chlorine and chlorine dioxide?
…you can have accurate chlorine dioxide control in water where chlorine is present?
Free chlorine and chlorine dioxide are both oxidants used for disinfection in water. Each act differently as a disinfectant but are measured in almost the same way; with an electrochemical sensor or with an online DPD sensor. It is sometimes beneficial to have both disinfectants in the water at the same time, particularly when chlorine dioxide is being added to mains water.
In most non-membraned (and some membraned) amperometric sensors, oxidants are detected by a current produced at the working electrode, at a particular voltage. The same technology can effectively be ‘tuned’ to different oxidisers by varying the voltage. Lots of oxidants are measurable over a range of voltages, and sometimes those response curves overlap.
The graph shows that at almost any voltage where you can measure free chlorine, the chlorine dioxide curve overlaps with the chlorine one. This means it can be very difficult to find a probe that measures free chlorine, but doesn’t measure chlorine dioxide. Although these response curves can shift depending on probe design, electrode material and other factors, it is very difficult to engineer a response curve that gives a good signal for free chlorine but not for chlorine dioxide.
The DioSense Membraned chlorine dioxide sensor from Pi is not susceptible to interference by free chlorine. This means that the DioSense Membraned sensor can be used in conjunction with Pi’s HaloSense free chlorine sensor, to measure chlorine dioxide and free chlorine independently of each other in the same application, on Pi’s CRONOS® or CRIUS® analyser. The analyser takes the signal from the free chlorine probe, which does have a known interference from chlorine dioxide (1ppm of chlorine dioxide will show up as 0.75ppm of chlorine). The normalised signal from the chlorine dioxide sensor can then be removed.
The HaloSense sensors can come equipped to automatically clean themselves at user defined intervals, with all the benefits of no operator intervention for up to 6 months. The Autoflush is particularly useful in food preparation, pulp and paper, and many applications where there is likely to be a build up of solids in the sample. For more information about Autoflush click here.
For some free chlorine applications with high and variable pH, pH compensation can improve the accuracy of the analyser. For pH compensation to be valid it must be done with the highest quality pH sensors and with chlorine sensors that have a reduced susceptibility to varying pH, such as those used in the HaloSense range.
The graph shows the errors on a real HaloSense free chlorine sensor when a sample of 1 ppm free chlorine has the pH changed from pH 9 to more than pH 10, down to pH 7.5 and back again. The graph shows that the vast majority of applications won’t need pH compensation at all and for those that do that free chlorine sensor is the most appropriate sensor available to have that compensation applied.
The CRONOS® and CRIUS® free and total residual dosing controllers can be equipped with four PID process control options, data-logging, relay outputs, analog outputs and serial communications such as: Ethernet, Modbus and Profibus. Remote monitoring of the instruments (including remote access to all control options) is available via the internet over GPRS and via a LAN. In fact the CRIUS® HaloSense monitor has all the options you could want, whilst the CRONOS® provides a low cost alternative and is particularly great value for money!
PID stands for Proportional Integrated Derivative and it is a mathematical manipulation of the sensor signal to give an output that will control a pump and manage a constant chlorine level in the water. All the features are adjustable and there are safety features built in such as overfeed protection. For a discussion of PID control please see our technical notes here.
Pi’s chlorine controllers have been used in many control applications such as in pasteurisers, water treatment, cooling towers, swimming pools etc.
Document | Type | Size |
---|---|---|
HaloSense | Brochure | 676kB |
pH Compensation | Technical Note | 516kB |
pH Effects on Pi’s Free Chlorine Sensor | Technical Note | 590kB |
Free Chlorine Probe Maintenance | Technical Note | 650kB |
Total Chlorine Probe Maintenance | Technical Note | 655kB |
Seawater Chlorination | Technical Note | 662kB |
HaloSense Hints and Tips | Technical Note | 551kB |
HaloSense Zero | Technical Note | 712kB |
ORP vs. ppm | Technical Note | 607kB |
CRONOS® | Brochure | 712kB |
CRIUS® | Brochure | 733kB |
CRIUS® Remote Communications | Brochure | 669kB |
CRONOS® and CRIUS® Control Options | Technical Note | 649kB |
Remote Access GPRS | Technical Note | 593kB |
Autoflush | Brochure | 411kB |
Probe Fouling | Technical Note | 316kB |
When chlorine is added as a disinfectant to water it oxidises material in the water thereby killing any organisms. The ‘Residual Chlorine’ is the chlorine left over at the end of the process and is usually what we measure.
If water contains both ammonia and hypochlorite it will react to form monochloramine.
NH3 + OCl– → NH2Cl + OH–
In an acidic solution Monochloramine disproportionates to form Nitrogen Trichloride.
2NH2Cl + H+ → NHCl2 + NH4+
3NHCl2 + H+ → 2NCl3 + NH4+
In solution where there are low concentrations of chlorine it is often Chloramines that can be smelled not ‘chlorine’.
The three Chloramines above are collectively known as ‘Combined Chlorine’.
Pi offers Free and Total Chlorine sensors in the range 0.005-0.5ppm (total only), 0.005-2ppm, 0.05-5ppm, 0.05-10ppm, 0.05-20ppm and 0.5-200ppm (free only).
Yes, but when you add chlorine to seawater there is a displacement reaction to form Residual Bromine. For more information see our Technical Note on measuring chlorine in seawater.
This depends on the application. The online chlorine sensor has a very low drift so most people calibrate it either once a week, once a month or even every six months.
Once a year (free and total), every 3-6 months (zero).
Once a year.
Yes, but only a very small amount and most users are happy to accept this.
Both ozone and chlorine dioxide will interfere with the measurement. For more information, click here.
If stored in a cool dry place, two years.
PVC-U, stainless steel, hydrophilic membrane, PEEK (total and zero) and silicone.
0°C – 45°C (free and total), 0°C – 40°C (zero).
The sensor operates at a positive voltage all of the time so any drift on the zero is negligible compared to the positive operating voltage so no zero is necessary.
Nothing! The sensor has a thermistor that measures the temperature and does an automatic compensation.
Use a handheld meter. These are available from a variety of suppliers and nearly all of them utilise colourimetric DPD to determine the chlorine concentration in the sample.
Firstly take the sample from right at the instrument. Secondly don’t take the sample when the concentration is varying quickly, and thirdly use a good quality handheld and follow the instructions carefully.
During calibration the analyser looks at the stability (rate of change) of the signal from the probe and if it varies by more than 10% over the countdown then the analyser prevents calibration to avoid the calibration routine introducing errors.
No. Total Chlorine is the sum of Free Chlorine and Combined Chlorine, therefore Total Chlorine is always equal to or greater than both Combined Chlorine or Free Chlorine.
Free Chlorine is made when a chlorine species is added to water. The chlorine hydrolyses and forms OCL- and HOCl, the relative amount of both depends on the pH and to a lesser extent on the temperature and ionic strength of the water. Typical additive to form free chlorine are Chlorine (gas), Sodium Hypochlorite (liquid), Calcium Hypochlorite (solid).
Chlorine is the name of the element. In its elemental form Chlorine is a highly toxic gas, that has been used as a weapon. When Chlorine is dissolved in water it forms two species, OCl- (the hypochlorite ion) and HOCl (hypochlorous acid), the sum of these two species is Free Chlorine which is often used as a disinfectant in, for example, a swimming pool.
Free chlorine reacts with things in a pool and changes them. For example free chlorine reacts with viruses and bacteria. It changes and kills those organisms but is changed by them in the same time…in effect it is used up. Free chlorine can also react with ammonia in a pool to form combined chlorine. No free chlorine in a pool is always a result of either there isn’t chlorine going into the pool (a dosing problem) or it has all been used up (reacted).
Focus Ons are a series of short articles distributed by email providing technical information regarding instrumentation, process measurement in potable, waste, process and pool waters. If you would like to join the mailing list, please contact us.
Did you know that when you dose chlorine into seawater it is bromine that does the disinfection?
Did you know that DPD 1 measures free chlorine or total bromine and not free bromine?
The chemistry of the chlorination of seawater is more complex than many people realise and although the measurement of chlorine residuals is possible in seawater (and therefore automatic control of chlorine dosing), better results will be obtained if this is fully understood.
Seawater contains about 70 ppm dissolved bromides most of which are sodium bromide. When you put chlorine in water it displaces (because it’s more reactive) the bromine from the bromide and becomes a chloride. So for up to about 70 ppm of total chlorine dosed what you actually have in the water is free bromine and combined bromine (NOT free and combined chlorine) so it is the total bromine that actually does the disinfection [1]. So why does everyone call it chlorination when technically it is bromination? Mainly because most people don’t know this interesting bit of chemistry. So what? Normally it makes no difference at all as bromine is an effective disinfectant, however there can be a lot of confusion when it comes to monitoring residuals and controlling dosing. Choosing the correct sensor to control the dosing is crucial as is choosing the correct DPD test.
Pi offer a specialist range of seawater chlorination controllers, but to choose the right controller we need to understand the chemistry going on. A technical note on the same subject is available here.
Due to the confusion on what is being measured it is easy for an engineer to specify the wrong equipment and calibrate it incorrectly. For example, it is common for a free chlorine sensor to be specified for seawater chlorination control. Most electrochemical free chlorine sensors will react to free bromine (not all so be careful!) but this isn’t necessarily what you need for bromination control. Most authors agree that whilst the disinfection capability between free chlorine and combined chlorine differs, when it comes to free bromine and combined bromine, both forms of the chemical are equally good at disinfection so a better measurement would be total bromine, which requires a total bromine sensor.
To add to this already confusing environment we need to look at calibrating online sensors or using handheld photometers to track the residual. DPD is used extensively to measure chlorine residuals and it also reacts to bromine so can be used for both, however, DPD 1 measures FREE chlorine or TOTAL bromine. The situation can therefore arise where you have an online instrument such as a CRONOS® or CRIUS® specified as a free chlorine, actually measuring free bromine but calibrated as a total bromine (against DPD 1)! Typically, the best results are obtained by specifying a total bromine (total chlorine) sensor and calibrating it using DPD 1. That, however, isn’t the end of the story! When specifying an analyser it is crucial that we suppliers know that it is for use with seawater because the physical and chemical make-up of seawater is very different to potable or process water and this can affect what we would supply to customers.
It is crucial for us to know if you are going to use a Pi sensor in seawater, so we can provide you with a saltier electrolyte. Osmosis means that water moves from a low solute concentration to a higher solute concentration across a semi-permeable membrane. The electrolyte in our sensors is saltier than potable or process water so osmosis forces water into the end of the sensor, which the sensor is designed to cope with, however, with seawater the process is reversed and the water in the electrolyte can be forced out of the sensor into the sample. To solve the problem we supply electrolyte especially designed for seawater, with a higher salinity.
Many seawater chlorination applications are estuarine in nature (partly seawater and partly fresh water) and it is the degree of dilution which determines which sensor and which electrolyte you should use. Seawater has approximately 70 ppm bromides and so up to 70 ppm chlorine the replacement will be 100%. If the seawater is 50% fresh water then up to 35 ppm chlorine will give 100% displacement. For example, if we looked at a 2 ppm residual then the water could be only 3% seawater and 97% fresh water and you would still be measuring bromine, so a total bromine sensor calibrated with DPD 1 would be appropriate. For any water that is contaminated with seawater the seawater electrolyte is likely to be the most appropriate.
If all of this is too much to take in and remember, then don’t worry! Just remember to talk to Pi for any online chlorination application, and we will do the rest… guaranteed!
[1]. White’s Handbook of Chlorination and Alternative Disinfectants, 5th Edition, Wiley – page 874, pages 122-129.
You probably know that some instruments use ORP to control chlorine dosing and others use ppm chlorine sensors but … did you know that ORP over about 3 ppm won’t work?
… did you know that swimming pools in the USA use ORP and in Europe use ppm chlorine sensors?
… did you know that the ORP of towns water can vary a great deal?
In the USA nearly all pools and spas use ORP sensors to control their chlorine dose, yet conversely in the UK and Western Europe most ORP systems have been replaced with systems that measure the concentration of free chlorine in water. Pi provides systems that utilise either or both technologies.
Oxidation reduction potential (ORP or REDOX) sensors, measure the tendency of water to gain or lose electrons from anything in the water. The more positive a reading from an ORP the greater the tendency the water has to oxidise (gain electrons from) organisms or other material in the water, thereby killing or destroying them.
When chlorine is dosed into a pool it form OCl– and HOCl. Disinfection is largely done by the HOCl and ORP responds to the concentration of HOCl in the water, which makes it a good measure of the tendency of the chlorine in the water to kill bugs. Despite this, ORP is a secondary measure of HOCl and is affected by a multitude of other factors, some of which will be touched on below. The main attractions of ORP are; low purchase cost, no calibration and little or no maintenance.
Unfortunately, what ORP sensors measure is tendency and not capacity, i.e. ORP measures the likelihood or the ability of the water to kill bugs, but not how many bugs that water can kill, a subtle but very important difference. A sample with high ORP may be able to kill a small number of bugs very quickly but then not be able to kill future pollution. What’s more, although chlorine affects ORP very strongly it is not the only variable involved. The pH of water affects ORP directly and also affects the concentration ratio of OCl–/HOCl, the two main disinfectant components. A lower pH (higher acidity) will cause an increase in the relative concentrations of HOCl causing an increase in ORP.
Perhaps the biggest issue with ORP is that the ORP readings on water with no chlorine in it will be different depending on the source of that water. This means that an ORP of 750mV in one part of the country is not the same chlorine concentration as 750mV in another part of the country. Also the ORP response to HOCl is not linear and increasing residual chlorine above 3 ppm has little effect on ORP readings making control above 3 ppm extremely difficult. These issues typically lead to overdosing the water with chlorine, in order to compensate for these effects. This can be seen very clearly in US pools which often have more than 2 ppm of chlorine compared to European pools which typically operate around 0.8-1.5 ppm (The World Health Organisation recommends 1 ppm residual).
These sensors use electrochemistry to measure the free chlorine concentration directly. They tend to be slightly more expensive than an ORP sensor, but are more reproducible and precise, and therefore tend to give better control (and therefore reduced chemical cost). They are specific to free chlorine (the disinfectant) and can be easily calibrated using a DPD test for free chlorine. Whilst the capital cost for a ppm chlorine sensor is higher, total cost of ownership tends to be lower as ORP sensors are typically replaced every year and ppm sensors last for ten years or more.
A ppm sensor measures the capacity of water to kill organisms, the only problem is that it doesn’t measure how fast the bugs are killed, a variable largely down to pH. There are two different types of ppm sensors. The first measure only HOCl, and have very similar problems to ORP sensors. The other type of sensor, in pHs below 8.0, measure both HOCl and OCl–. Pi only recommends the use of sensors that (for use in pools) are independent of pH, and the use of pH control that is independent of chlorine dosage. This leads to tighter control of both pH and free chlorine meaning chlorine residuals can be more tightly controlled and reduced, which in turn leads to lower costs and a more pleasant bathing experience.
Advantages | Disadvantages |
---|---|
ORP Sensors Simple (no calibration) Inexpensive | ORP Sensors Doesn’t measure disinfection capacity Affected more by pH than by free chlorine Non-Linear Not reproducible (not the same from site to site) Affected by changing water chemistry Affected by all oxidants Using ORP control normally leads to higher residuals and less stable control |
ppm Sensors Measure free chlorine directly Results comparable across different sites Linear response Only affected by free chlorine Using a ppm sensors leads to lower residuals, more stable control and better swimmer experiences | ppm Sensors Requires calibration More expensive – but not much More maintenance – but not much |
If you’ve ever had an application that uses Reverse Osmosis (RO), such as in a renal ward, you probably understand the damaging effect that chlorine can have on RO membranes, but did you know that…Pi has a security system that can alert you to any free chlorine present and can actually prevent the contaminated water from reaching the membranes at all?
The most common source of water for corporate buildings, hospitals and industrial processes, is standard mains water. This water typically contains chlorine, added by municipal water companies, for its disinfection properties. For any system that requires RO membranes, if the water source is mains water, it is common to have carbon filters positioned before the membranes. The carbon filters are designed to remove any chemicals in the water that might be damaging to the RO membranes, including chlorine.
Our HaloSense Zero chlorine controller measures the water coming out of the carbon filters before it reaches the RO membranes. Any free chlorine breakthrough from the carbon filters is detected by the system, which will set off an alarm and can also be configured to automatically shut off valves to prevent the contaminated water from reaching the RO membranes.
The HaloSense Zero effectively acts as a security measure to ensure that if there is a breakthrough of chlorine, the system can be shut down to prevent damage to the RO membranes. This can help to extend the lifetime of the expensive RO membranes and save the customer money.
The removal of chlorine is even more important in hospital systems where the water is supplied to renal wards. In this case the HaloSense Zero chlorine analyser not only protects the RO membranes, but it can also help to save lives. If any chlorine was to break through the carbon filters and make it past the RO membranes as well, it could endanger the lives of renal patients in the hospital. The HaloSense Zero chlorine system is a fantastic safety feature, providing an extra line of defence against the potential hazard.
The HaloSense Zero consists of a sensor designed to measure the absence of chlorine connected to a CRONOS® or CRIUS® controller. The sensor can detect even very low levels of free chlorine, while the CRONOS® or CRIUS® controller acts as the brains of the system, interpreting data from the sensor. In the event that any free chlorine is detected, the analyser will send an alarm signal and can automatically shut off valves to prevent chlorine from reaching the RO membranes.
The only catch is that the HaloSense Zero can’t measure combined chlorines in the water. Typical mains water in most countries contains a mixture of free chlorine and combined chlorine which is what the HaloSense Zero is designed to detect and help protect the RO membranes against.
The ingenious HaloSense Zero chlorine analyser will even periodically check the responsiveness of the sensor automatically, to ensure that the sensor is still reacting correctly when free chlorine is present. It does this by switching between the post-carbon filter water and chlorinated mains water using a 3-way solenoid valve controlled by a programmed timer.
If you are using a carbon filter before your RO membranes to remove the chlorine, probably the only reason you aren’t using this system already is simply that you haven’t heard of it before. The Pi HaloSense Zero chlorine system is just one of Pi’s innovative solutions to water treatment problems.
You probably know that most chlorine, ozone and chlorine dioxide analysers are calibrated using hand held DPD kits but…
… did you know that DPD can’t tell you when you have no residual?
… did you know that errors on DPD performance can be up to ± 100%?
… did you know that a significant number of service calls received by Pi relate to poor calibration?
DPD (N.N-diethyl-p-phenylenediamine) is a chemical that when mixed with water containing an oxidant, changes colour depending on the concentration of the oxidant present. A handheld colourimeter measures light passing through the coloured solution. The absorption of that light by the liquid gives a concentration value. It is usually used to check concentration of, for example, free chlorine, total chlorine, ozone and chlorine dioxide etc. in water.
When the DPD kit gives a value, it is often used to calibrate online instruments… and that is where Pi comes in!
As a manufacturer of online instruments we have to understand DPD in order to help our customers when they have problems calibrating their online monitors.
This Focus On will look at:
If you suspect there is zero oxidant in your sample, hold the vial up to a white surface. If you cannot see any trace of pink colour, it is likely any reading you are getting is from the unreacted DPD tablet.
(and won’t always give a ‘high concentration’ reading error).
Many people are unaware that past a certain level of oxidant, DPD will not form its characteristic pink colour, and instead will ‘bleach’ to form a clear solution. This can lead people to think there is little or no oxidant in their water, when in fact there is so much that it is bleaching their DPD. Be on the lookout for a flash of pink when the tablet or powder is added if you suspect your sample is being bleached. NB. special kits and reagents are available for measuring oxidant above 6 ppm.
chlorine, chlorine dioxide, chlorite, ozone, organochlorides, bromine and more, meaning interferents are a big problem.
DPD is a fantastic chemical, in that it is very versatile as a colouring agent, which is how it gives the oxidant the colour that we measure. This versatility does come at a price, DPD is not very specific as an analysis tool, and so if other chemicals are present in the sample, they can interfere with the reading, giving an inaccurate result. Common interferents include chlorine dioxide (for chlorine measurement, and vice versa), sodium chlorite, ozone, organochloramines, peroxides, and many more.
Here is an easy to read, printable checklist to ensure accurate DPD readings every time.
The pink solution formed after DPD tests can leave a residue behind on the glass, which will affect the DPD reading. This residue can be easily cleaned off using what is in your DPD kit.
Tap water
If you use normal tap water to wash out vials, droplets left behind can affect your reading due to the residual chlorine in drinking water. It is best (but not always practical) to use deionised water to wash out your vials, but if this isn’t available (deionised water can be purchased as car battery top up water from any car parts supplier) then you can use cooled boiled tap water, as boiling gets rid of any chlorine. If not then simply make sure the vials are perfectly dry before use.
DPD has a wide range of interferents. This means recurrent problems can sometimes be caused by the chemical makeup of the sample. For example, chlorite (ClO2–) and chlorine dioxide both affect DPD, but only chlorine dioxide is measured by most chlorine dioxide amperometric sensors.
DPD can be used to track bromine, but DPD No.1 tablets measure FREE chlorine or TOTAL bromine. As combined bromine is just as effective a disinfectant as free bromine, this generally doesn’t pose too much of a problem, however some amperometric sensors measure free bromine, and cannot be calibrated using DPD No.1 tablets. For more information on measuring bromine, or chlorine in seawater, please see Pi’s technical note on Seawater Chlorination.
This option can be added to our pH, ORP, Turbidity, Suspended Solids and Dissolved Oxygen (DO) sensors. Consisting of an end cap to direct the flow of clean water (or air for a DO sensor) across the face of the sensor blasting any dirt away. The cleaning is controlled by a single valve positioned in an easily accessible location.
If using air to clean a DO sensor the system can also automatically verify that the sensor is still responding correctly, removing any need to remove the sensor from the sample for months at a time.
For sensors that require flow cell mounting like Chlorine, Ozone and Chlorine Dioxide, an Autoflush system has inbuilt valves which automatically start/stop the sample flow and control the flow of clean water past the probe. The user can set the flushing interval and duration to keep the flow cell and sensor clear from fouling. For particularly dirty or stubborn contaminants, warm water can be used as the flush water to aid cleaning.
With the above options, whatever the application or parameter being measured, Process Instruments will be able to provide a monitoring system that will not only be accurate, precise and long lasting but that will also remain free from fouling and save the operator both time and money.
Measuring free chlorine and chlorine dioxide independently of each other is quite a challenge, given their chemical similarities. Many sensors struggle to differentiate between the two measurands, but did you know that…
…many chlorine probes suffer from interference in the presence of chlorine dioxide?
…DPD1 will read both chlorine and chlorine dioxide?
…you can have accurate chlorine dioxide control in water where chlorine is present?
Free chlorine and chlorine dioxide are both oxidants used for disinfection in water. Each act differently as a disinfectant but are measured in almost the same way; with an electrochemical sensor or with an online DPD sensor. It is sometimes beneficial to have both disinfectants in the water at the same time, particularly when chlorine dioxide is being added to mains water.
In most non-membraned (and some membraned) amperometric sensors, oxidants are detected by a current produced at the working electrode, at a particular voltage. The same technology can effectively be ‘tuned’ to different oxidisers by varying the voltage. Lots of oxidants are measurable over a range of voltages, and sometimes those response curves overlap.
The graph shows that at almost any voltage where you can measure free chlorine, the chlorine dioxide curve overlaps with the chlorine one. This means it can be very difficult to find a probe that measures free chlorine, but doesn’t measure chlorine dioxide. Although these response curves can shift depending on probe design, electrode material and other factors, it is very difficult to engineer a response curve that gives a good signal for free chlorine but not for chlorine dioxide.
The DioSense Membraned chlorine dioxide sensor from Pi is not susceptible to interference by free chlorine. This means that the DioSense Membraned sensor can be used in conjunction with Pi’s HaloSense free chlorine sensor, to measure chlorine dioxide and free chlorine independently of each other in the same application, on Pi’s CRONOS® or CRIUS® analyser. The analyser takes the signal from the free chlorine probe, which does have a known interference from chlorine dioxide (1ppm of chlorine dioxide will show up as 0.75ppm of chlorine). The normalised signal from the chlorine dioxide sensor can then be removed.
Oliver Riding
England & Wales
Bill Sykes
Scotland, Northern Ireland and Isle of Man
Click on the following for help
> Help with your application
> Technical help with your Analyser
> Help choosing a product
Following on from the success of numerous water treatment plants in the UK and Ireland, Pi is now beginning to offer the CoagSense coagulation controller to other countries in the
Chlorine analysers identical to those already installed on some of their customer’s sites in Lisbon, Portugal, were chosen by Pi’s distributor for Portugal and Spain, Izasa Scientific, as part of
Norwegian companies continue to innovate in many industries such as aquaculture and wastewater treatment, and Pi’s distributor has recently been exploring ways in which Pi’s technology can be applied to
Subscribe to receive technical and applications information in the following categories: